Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1342340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567086

RESUMO

Orthopedic implants are the most commonly used fracture fixation devices for facilitating the growth and development of incipient bone and treating bone diseases and defects. However, most orthopedic implants suffer from various drawbacks and complications, including bacterial adhesion, poor cell proliferation, and limited resistance to corrosion. One of the major drawbacks of currently available orthopedic implants is their inadequate osseointegration at the tissue-implant interface. This leads to loosening as a result of immunological rejection, wear debris formation, low mechanical fixation, and implant-related infections. Nanotechnology holds the promise to offer a wide range of innovative technologies for use in translational orthopedic research. Nanomaterials have great potential for use in orthopedic applications due to their exceptional tribological qualities, high resistance to wear and tear, ability to maintain drug release, capacity for osseointegration, and capability to regenerate tissue. Furthermore, nanostructured materials possess the ability to mimic the features and hierarchical structure of native bones. They facilitate cell proliferation, decrease the rate of infection, and prevent biofilm formation, among other diverse functions. The emergence of nanostructured polymers, metals, ceramics, and carbon materials has enabled novel approaches in orthopaedic research. This review provides a concise overview of nanotechnology-based biomaterials utilized in orthopedics, encompassing metallic and nonmetallic nanomaterials. A further overview is provided regarding the biomedical applications of nanotechnology-based biomaterials, including their application in orthopedics for drug delivery systems and bone tissue engineering to facilitate scaffold preparation, surface modification of implantable materials to improve their osteointegration properties, and treatment of musculoskeletal infections. Hence, this review article offers a contemporary overview of the current applications of nanotechnology in orthopedic implants and bone tissue engineering, as well as its prospective future applications.

2.
Front Bioeng Biotechnol ; 12: 1328997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405378

RESUMO

Recent advancements in orthopedic surgery have greatly improved the management of musculoskeletal disorders and injuries. This review discusses the latest therapeutic approaches that have emerged in orthopedics. We examine the use of regenerative medicine, including stem cell therapy and platelet-rich plasma (PRP) injections, to accelerate healing and promote tissue regeneration. Additionally, we explore the application of robotic-assisted surgery, which provides greater precision and accuracy during surgical procedures. We also delve into the emergence of personalized medicine, which tailors treatments to individual patients based on their unique genetic and environmental factors. Furthermore, we discuss telemedicine and remote patient monitoring as methods for improving patient outcomes and reducing healthcare costs. Finally, we examine the growing interest in using artificial intelligence and machine learning in orthopedics, particularly in diagnosis and treatment planning. Overall, these advancements in therapeutic approaches have significantly improved patient outcomes, reduced recovery times, and enhanced the overall quality of care in orthopedic surgery.

3.
Nanomedicine (Lond) ; 19(3): 255-275, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38275154

RESUMO

Nanotechnology has revolutionized the field of bone regeneration, offering innovative solutions to address the challenges associated with conventional therapies. This comprehensive review explores the diverse landscape of nanomaterials - including nanoparticles, nanocomposites and nanofibers - tailored for bone tissue engineering. We delve into the intricate design principles, structural mimicry of native bone and the crucial role of biomaterial selection, encompassing bioceramics, polymers, metals and their hybrids. Furthermore, we analyze the interface between cells and nanostructured materials and their pivotal role in engineering and regenerating bone tissue. In the concluding outlook, we highlight emerging frontiers and potential research directions in harnessing nanomaterials for bone regeneration.


Assuntos
Nanocompostos , Nanotecnologia , Materiais Biocompatíveis/uso terapêutico , Materiais Biocompatíveis/química , Regeneração Óssea , Nanocompostos/uso terapêutico , Nanocompostos/química , Engenharia Tecidual
4.
Front Bioeng Biotechnol ; 12: 1292171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282892

RESUMO

Globally, an annual count of more than two million bone transplants is conducted, with conventional treatments, including metallic implants and bone grafts, exhibiting certain limitations. In recent years, there have been significant advancements in the field of bone regeneration. Oxygen tension regulates cellular behavior, which in turn affects tissue regeneration through metabolic programming. Biomaterials with oxygen release capabilities enhance therapeutic effectiveness and reduce tissue damage from hypoxia. However, precise control over oxygen release is a significant technical challenge, despite its potential to support cellular viability and differentiation. The matrices often used to repair large-size bone defects do not supply enough oxygen to the stem cells being used in the regeneration process. Hypoxia-induced necrosis primarily occurs in the central regions of large matrices due to inadequate provision of oxygen and nutrients by the surrounding vasculature of the host tissues. Oxygen generating biomaterials (OGBs) are becoming increasingly significant in enhancing our capacity to facilitate the bone regeneration, thereby addressing the challenges posed by hypoxia or inadequate vascularization. Herein, we discussed the key role of oxygen in bone regeneration, various oxygen source materials and their mechanism of oxygen release, the fabrication techniques employed for oxygen-releasing matrices, and novel emerging approaches for oxygen delivery that hold promise for their potential application in the field of bone regeneration.

5.
Sci Bull (Beijing) ; 69(5): 612-620, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38101961

RESUMO

Aerosol-bound organic radicals, including environmentally persistent free radicals (EPFRs), are key components that affect climate, air quality, and human health. While putative structures have been proposed, the molecular characteristics of EPFRs remain unknown. Here, we report a surrogate method to characterize EPFRs in real ambient samples using mass spectrometry. The method identifies chemically relevant oxygenated polycyclic aromatic hydrocarbons (OxPAH) that interconvert with oxygen-centered EPFR (OC-EPFR). We found OxPAH compounds most relevant to OC-EPFRs are structurally rich and diverse quinones, whose diversity is strongly associated with OC-EPFR levels. Both atmospheric oxidation and combustion contributed to OC-EPFR formation. Redundancy analysis and photochemical aging model show pyrolytic sources generated more oxidized OC-EPFRs than photolytic sources. Our study reveals the detailed molecular characteristics of OC-EPFRs and shows that oxidation states can be used to identify the origins of OC-EPFRs, offering a way to track the development and evolution of aerosol particles in the environment.

6.
Drug Deliv ; 30(1): 2241667, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38037335

RESUMO

Nanotechnology has made significant progress in various fields, including medicine, in recent times. The application of nanotechnology in drug delivery has sparked a lot of research interest, especially due to its potential to revolutionize the field. Researchers have been working on developing nanomaterials with distinctive characteristics that can be utilized in the improvement of drug delivery systems (DDS) for the local, targeted, and sustained release of drugs. This approach has shown great potential in managing diseases more effectively with reduced toxicity. In the medical field of orthopedics, the use of nanotechnology is also being explored, and there is extensive research being conducted to determine its potential benefits in treatment, diagnostics, and research. Specifically, nanophase drug delivery is a promising technique that has demonstrated the capability of delivering medications on a nanoscale for various orthopedic applications. In this article, we will explore current advancements in the area of nanostructured DDS for orthopedic use.


Assuntos
Nanoestruturas , Procedimentos Ortopédicos , Ortopedia , Sistemas de Liberação de Medicamentos , Nanotecnologia/métodos , Ortopedia/métodos , Procedimentos Ortopédicos/métodos , Preparações Farmacêuticas
7.
Environ Sci Technol ; 57(49): 20854-20863, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38010983

RESUMO

The limited information in existing mass spectral libraries hinders an accurate understanding of the composition, behavior, and toxicity of organic pollutants. In this study, a total of 350 polycyclic aromatic compounds (PACs) in 9 categories were successfully identified in fine particulate matter by gas chromatography high resolution mass spectrometry. Using mass spectra and retention indexes predicted by in silico tools as complementary information, the scope of chemical identification was efficiently expanded by 27%. In addition, quantitative structure-activity relationship models provided toxicity data for over 70% of PACs, facilitating a comprehensive health risk assessment. On the basis of extensive identification, the cumulative noncarcinogenic risk of PACs warranted attention. Meanwhile, the carcinogenic risk of 53 individual analogues was noteworthy. These findings suggest that there is a pressing need for an updated list of priority PACs for routine monitoring and toxicological research since legacy polycyclic aromatic hydrocarbons (PAHs) contributed modestly to the overall abundance (18%) and carcinogenic risk (8%). A toxicological priority index approach was applied for relative chemical ranking considering the environmental occurrence, fate, toxicity, and analytical availability. A list of 39 priority analogues was compiled, which predominantly consisted of high-molecular-weight PAHs and alkyl derivatives. These priority PACs further enhanced source interpretation, and the highest carcinogenic risk was attributed to coal combustion.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Compostos Policíclicos/análise , Poluentes Atmosféricos/análise , Fluxo de Trabalho , Monitoramento Ambiental/métodos , Material Particulado/análise , Medição de Risco , China
8.
Front Bioeng Biotechnol ; 11: 1206806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675405

RESUMO

The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ functions. The variety of substances used for orthopedic implant applications has been substantially influenced by modern material technology. Therefore, nanomaterials can mimic the surface properties of normal tissues, including surface chemistry, topography, energy, and wettability. Moreover, the new characteristics of nanomaterials promote their application in sustaining the progression of many tissues. The current review establishes a basis for nanotechnology-driven biomaterials by demonstrating the fundamental design problems that influence the success or failure of an orthopedic graft, cell adhesion, proliferation, antimicrobial/antibacterial activity, and differentiation. In this context, extensive research has been conducted on the nano-functionalization of biomaterial surfaces to enhance cell adhesion, differentiation, propagation, and implant population with potent antimicrobial activity. The possible nanomaterials applications (in terms of a functional nanocoating or a nanostructured surface) may resolve a variety of issues (such as bacterial adhesion and corrosion) associated with conventional metallic or non-metallic grafts, primarily for optimizing implant procedures. Future developments in orthopedic biomaterials, such as smart biomaterials, porous structures, and 3D implants, show promise for achieving the necessary characteristics and shape of a stimuli-responsive implant. Ultimately, the major barriers to the commercialization of nanotechnology-derived biomaterials are addressed to help overcome the limitations of current orthopedic biomaterials in terms of critical fundamental factors including cost of therapy, quality, pain relief, and implant life. Despite the recent success of nanotechnology, there are significant hurdles that must be overcome before nanomedicine may be applied to orthopedics. The objective of this review was to provide a thorough examination of recent advancements, their commercialization prospects, as well as the challenges and potential perspectives associated with them. This review aims to assist healthcare providers and researchers in extracting relevant data to develop translational research within the field. In addition, it will assist the readers in comprehending the scope and gaps of nanomedicine's applicability in the orthopedics field.

9.
World Neurosurg ; 180: e183-e197, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37714458

RESUMO

BACKGROUND: Spinal cord injury (SCI) is a devastating condition, often leading to significant disability and impairment. As crucial immune cells, macrophages play a critical role in the pathophysiology of SCI. Understanding the current state of knowledge and research trends related to macrophages in SCI is crucial for developing effective therapeutic interventions. METHODS: Using search strategies, we retrieved relevant articles from the Web of Science Core Collection (WOSCC), resulting in a robust dataset for analysis. VOSviewer, Citespace, and PRISM were employed for analysis and visualization. Various bibliometric indicators, including publication trends, citation analysis, co-authorship networks, and keyword analysis, were utilized to assess the scholarly landscape of macrophage research in SCI. RESULTS: Our findings revealed a steady increase in publications over the past 33 years, indicating a growing interest in this field. We identified Popovich Phillip G was the most influential author, Ohio State University was the most influential institution, and identification of 2 distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord was the most influential paper in this field. CONCLUSIONS: This bibliometric analysis provides a comprehensive overview of the current knowledge landscape and research trends regarding macrophages in SCI. Neuroinflammation and macrophage polarization, transplation and molecular mechanism were emerging research areas and novel directions. Our study serves as a valuable resource for researchers in spinal cord injury research and therapeutic development.


Assuntos
Traumatismos da Medula Espinal , Animais , Camundongos , Humanos , Traumatismos da Medula Espinal/terapia , Autoria , Bibliometria , Instalações de Saúde , Macrófagos
10.
Front Bioeng Biotechnol ; 11: 1221365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621999

RESUMO

Nanotechnology has changed science in the last three decades. Recent applications of nanotechnology in the disciplines of medicine and biology have enhanced medical diagnostics, manufacturing, and drug delivery. The latest studies have demonstrated this modern technology's potential for developing novel methods of disease detection and treatment, particularly in orthopedics. According to recent developments in bone tissue engineering, implantable substances, diagnostics and treatment, and surface adhesives, nanomedicine has revolutionized orthopedics. Numerous nanomaterials with distinctive chemical, physical, and biological properties have been engineered to generate innovative medication delivery methods for the local, sustained, and targeted delivery of drugs with enhanced therapeutic efficacy and minimal or no toxicity, indicating a very promising strategy for effectively controlling illnesses. Extensive study has been carried out on the applications of nanotechnology, particularly in orthopedics. Nanotechnology can revolutionize orthopedics cure, diagnosis, and research. Drug delivery precision employing nanotechnology using gold and liposome nanoparticles has shown especially encouraging results. Moreover, the delivery of drugs and biologics for osteosarcoma is actively investigated. Different kind of biosensors and nanoparticles has been used in the diagnosis of bone disorders, for example, renal osteodystrophy, Paget's disease, and osteoporosis. The major hurdles to the commercialization of nanotechnology-based composite are eventually examined, thus helping in eliminating the limits in connection to some pre-existing biomaterials for orthopedics, important variables like implant life, quality, cure cost, and pain and relief from pain. The potential for nanotechnology in orthopedics is tremendous, and most of it looks to remain unexplored, but not without challenges. This review aims to highlight the up tp date developments in nanotechnology for boosting the treatment modalities for orthopedic ailments. Moreover, we also highlighted unmet requirements and present barriers to the practical adoption of biomimetic nanotechnology-based orthopedic treatments.

11.
J Biol Eng ; 17(1): 56, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644461

RESUMO

The use of biodegradable polymers for treating bone-related diseases has become a focal point in the field of biomedicine. Recent advancements in material technology have expanded the range of materials suitable for orthopaedic implants. Three-dimensional (3D) printing technology has become prevalent in healthcare, and while organ printing is still in its early stages and faces ethical and technical hurdles, 3D printing is capable of creating 3D structures that are supportive and controllable. The technique has shown promise in fields such as tissue engineering and regenerative medicine, and new innovations in cell and bio-printing and printing materials have expanded its possibilities. In clinical settings, 3D printing of biodegradable metals is mainly used in orthopedics and stomatology. 3D-printed patient-specific osteotomy instruments, orthopedic implants, and dental implants have been approved by the US FDA for clinical use. Metals are often used to provide support for hard tissue and prevent complications. Currently, 70-80% of clinically used implants are made from niobium, tantalum, nitinol, titanium alloys, cobalt-chromium alloys, and stainless steels. However, there has been increasing interest in biodegradable metals such as magnesium, calcium, zinc, and iron, with numerous recent findings. The advantages of 3D printing, such as low manufacturing costs, complex geometry capabilities, and short fabrication periods, have led to widespread adoption in academia and industry. 3D printing of metals with controllable structures represents a cutting-edge technology for developing metallic implants for biomedical applications. This review explores existing biomaterials used in 3D printing-based orthopedics as well as biodegradable metals and their applications in developing metallic medical implants and devices. The challenges and future directions of this technology are also discussed.

12.
Vascul Pharmacol ; 152: 107200, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37500029

RESUMO

Almost a third of all fatalities may be attributed to cardiovascular disease (CVD), making it a primary cause of mortalities worldwide. Better diagnostic tools and secure, non-invasive imaging techniques are needed to offer accurate information on CVD progression. Several elements contribute to the success of CVD personalized therapy, and two of the most crucial are accurate diagnosis and early detection. The therapy options available for conditions with a pathogenesis that unfold over decades, such as CVD, are very condition-specific and disease-stage based. Nanotechnology is increasingly being used as a therapeutic tool in the biomedical area, where they are used in various contexts, including diagnostics, biosensing, and drug administration. This review article provides an overview of the most recent applications of nanotechnology in the detection and management of prevalent CVDs.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Nanotecnologia/métodos
13.
Front Bioeng Biotechnol ; 11: 1199220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388772

RESUMO

Tendon wounds are a worldwide health issue affecting millions of people annually. Due to the characteristics of tendons, their natural restoration is a complicated and lengthy process. With the advancement of bioengineering, biomaterials, and cell biology, a new science, tissue engineering, has developed. In this field, numerous ways have been offered. As increasingly intricate and natural structures resembling tendons are produced, the results are encouraging. This study highlights the nature of the tendon and the standard cures that have thus far been utilized. Then, a comparison is made between the many tendon tissue engineering methodologies proposed to date, concentrating on the ingredients required to gain the structures that enable appropriate tendon renewal: cells, growth factors, scaffolds, and scaffold formation methods. The analysis of all these factors enables a global understanding of the impact of each component employed in tendon restoration, thereby shedding light on potential future approaches involving the creation of novel combinations of materials, cells, designs, and bioactive molecules for the restoration of a functional tendon.

14.
Front Bioeng Biotechnol ; 11: 1191509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260831

RESUMO

An emerging application of nanotechnology in medicine currently being developed involves employing nanoparticles to deliver drugs, heat, light, or other substances to specific types of cells (such as cancer cells). As most biological molecules exist and function at the nanoscale, engineering and manipulating matter at the molecular level has many advantages in the field of medicine (nanomedicine). Although encouraging, it remains unclear how much of this will ultimately result in improved patient care. In surgical specialties, clinically relevant nanotechnology applications include the creation of surgical instruments, suture materials, imaging, targeted drug therapy, visualization methods, and wound healing techniques. Burn lesion and scar management is an essential nanotechnology application. Prevention, diagnosis, and treatment of numerous orthopedic conditions are crucial technological aspects for patients' functional recovery. Orthopedic surgery is a specialty that deals with the diagnosis and treatment of musculoskeletal disorders. In recent years, the field of orthopedics has been revolutionized by the advent of nanotechnology. Using biomaterials comprised of nanoparticles and structures, it is possible to substantially enhance the efficacy of such interactions through nanoscale material modifications. This serves as the foundation for the majority of orthopedic nanotechnology applications. In orthopedic surgery, nanotechnology has been applied to improve surgical outcomes, enhance bone healing, and reduce complications associated with orthopedic procedures. This mini-review summarizes the present state of nanotechnology in orthopedic surgery, including its applications as well as possible future directions.

15.
Acta Biochim Pol ; 70(2): 371-377, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37307502

RESUMO

OBJECTIVE: Diabetes has been identified as a risk factor for intervertebral disc degeneration (IDD). The aim of this study is to investigate the potential mechanism underlying diabetes-related pyroptosis in nucleus pulposus (NP) cells. METHODS: We used a high-glucose environment to mimic diabetes in vitro and examined the endoplasmic reticulum stress (ERS) and pyroptotic response. Furthermore, we utilized activators and inducers of ERS to explore the role of ERS in high-glucose-induced pyroptosis in NP cells. We evaluated the ERS and pyroptosis levels using immunofluorescence (IF) or RT-PCR and measured the expression of collagen II, aggrecan, and MMPs. Additionally, we used ELISA to determine the levels of IL-1ß and IL-18 in the culture medium, and CCK8 assay to test cell viability. RESULTS: High-glucose conditions promoted the degeneration of NP cells and triggered ERS and pyroptosis. A high level of ERS aggravated pyroptosis, and partially suppressing ERS resisted high-glucose-induced pyroptosis and alleviated the degeneration of NP cells. Inhibiting caspase-1-based pyroptosis under high-glucose conditions helped relieve the degeneration of NP cells but did not affect ERS levels. CONCLUSIONS: High-glucose induces pyroptosis in NP cells via the mediation of ERS, and suppressing ERS or pyroptosis protects NP cells under high-glucose conditions.


Assuntos
Diabetes Mellitus , Núcleo Pulposo , Humanos , Núcleo Pulposo/metabolismo , Piroptose , Estresse do Retículo Endoplasmático , Diabetes Mellitus/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Apoptose
16.
Front Bioeng Biotechnol ; 11: 1160985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082219

RESUMO

Ovarian cancer stands as the fifth most prevalent cancer among women, causing more mortalities than any other disease of the female reproductive system. There are numerous histological subtypes of ovarian cancer, each of which has distinct clinical characteristics, risk factors, cell origins, molecular compositions, and therapeutic options. Typically, it is identified at a late stage, and there is no efficient screening method. Standard therapies for newly diagnosed cancer are cytoreductive surgery and platinum-based chemotherapy. The difficulties of traditional therapeutic procedures encourage researchers to search for other approaches, such as nanotechnology. Due to the unique characteristics of matter at the nanoscale, nanomedicine has emerged as a potent tool for creating novel drug carriers that are more effective and have fewer adverse effects than traditional treatments. Nanocarriers including liposomes, dendrimers, polymer nanoparticles, and polymer micelles have unique properties in surface chemistry, morphology, and mechanism of action that can distinguish between malignant and normal cells, paving the way for targeted drug delivery. In contrast to their non-functionalized counterparts, the development of functionalized nano-formulations with specific ligands permits selective targeting of ovarian cancers and ultimately increases the therapeutic potential. This review focuses on the application of various nanomaterials to the treatment and diagnosis of ovarian cancer, their advantages over conventional treatment methods, and the effective role of controlled drug delivery systems in the therapy of ovarian cancer.

17.
Adv Mater ; 35(26): e2300136, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36971078

RESUMO

High-performance X-ray scintillators with low detection limits and high light yield are of great importance and are a challenge for low-dose X-ray imaging in medical diagnosis and industrial detection. In this work, the synthesis of a new 2D perovskite, Cs2 CdBr2 Cl2 , via hydrothermal reaction is reported. By doping Mn2+ into the perovskite, a yellow emission located at 593 nm is obtained, and the photoluminescence quantum yield (PLQY) of Cs2 CdBr2 Cl2 :5%Mn2+ perovskite reaches the highest value of 98.52%. The near-unity PLQY and negligible self-absorption of Cs2 CdBr2 Cl2 :5%Mn2+ enable excellent X-ray scintillation performance with a high light yield of 64 950 photons MeV-1 and low detection limit of 17.82 nGyair s-1 . Moreover, combining Cs2 CdBr2 Cl2 :5%Mn2+ with poly(dimethylsiloxane) to fabricate a flexible scintillator screen achieves low-dose X-ray imaging with a high resolution of 12.3 line pairs (lp) mm-1 . The results suggest that Cs2 CdBr2 Cl2 :5%Mn2+ is a promising candidate for low-dose and high-resolution X-ray imaging. The study presents a new approach to designing high-performance scintillators through metal-ion doping.

18.
Environ Sci Technol ; 56(23): 16759-16767, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36334087

RESUMO

Benzotriazole UV stabilizers (BZT-UVs), including 2-(3,5-di-tert-amyl-2-hydroxyphenyl)benzotriazole (UV-328) that is currently under consideration for listing under the Stockholm Convention, are applied in many commodities and industrial products. However, limited information is available on the interannual variation of their environmental occurrence. In this study, an all-in-one strategy combining target, suspect, and nontarget screening analysis was established to comprehensively explore the temporal trends of BZT-UVs in mollusks collected from the Chinese Bohai Sea between 2010 and 2018. Significant residue levels of the target analytes were determined with a maximum total concentration of 6.4 × 103 ng/g dry weight. 2-(2-Hydroxy-3-tert-butyl-5-methyl-phenyl)-5-chloro-benzotriazole (UV-326), 5-chloro-2-(3,5-di-tert-butyl-2-hydroxyphenyl)benzotriazole (UV-327), and 2-(2-hydroxy-5-methylphenyl) benzotriazole (UV-P) were the predominant analogues, and UV-328 was the most frequently detected BZT-UV with a detection frequency (DF) of 87%. Whereas five biotransformation products and six impurity-like BZT-UVs were tentatively identified, their low DFs and semi-quantified concentrations suggest that the targeted analytes were the predominant BZT-UVs in the investigated area. A gradual decrease in the total concentrations of BZT-UVs was observed, accompanied by downward trends of the abundant compounds (e.g., UV-326 and UV-P). Consequently, the relative abundance of UV-327 increased because of its consistent environmental presence. These results suggest that continuous monitoring and risk assessment of BZT-UVs other than UV-328 are of importance in China.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Moluscos , Raios Ultravioleta , Poluentes Químicos da Água/química , China , Oceanos e Mares
19.
Front Oncol ; 12: 990877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300095

RESUMO

Cervical cancer is one of the women-associated tumors that affects numerous people yearly. It is the fourth most common malignancy in women worldwide. Following early diagnosis, this cancer can be cured mainly by traditional methods such as surgery, tumor resection, and chemotherapy; nonetheless, it becomes more challenging to treat in advanced and metastatic stages. With the advent of novel treatments such as angiogenesis inhibitors or immuno-checkpoint blockers in recent years, the survival rate of patients with advanced cervical cancer has significantly increased. However, it has not yet reached a satisfactory level. It has been revealed that human papillomavirus (HPV) infection is responsible for more than 90% of cervical cancer cases. However, evidence revealed that monotherapy with anti-HPV vaccines such as ISA101 could not affect tumor growth and progression in patients with HPV-induced cervical cancer. Therefore, combining ISA101 and immune checkpoint blockers or other immunotherapeutic approaches may be more robust and effective than monotherapy with ISA101 or immune checkpoint blockers for treating cervical cancer. This review summarizes the ISA101 properties, advantages and disadvantages. Furthermore, various conducted combination therapies with ISA101 and the effectiveness and challenges of this treatment have been discussed.

20.
Drug Deliv ; 29(1): 3218-3232, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36259505

RESUMO

Formulations from nanotechnology platform promote therapeutic drug delivery and offer various advantages such as biocompatibility, non-inflammatory effects, high therapeutic output, biodegradability, non-toxicity, and biocompatibility in comparison with free drug delivery. Due to inherent shortcomings of conventional drug delivery to cancerous tissues, alternative nanotechnological-based approaches have been developed for such ailments. Ovarian cancer is the leading gynecological cancer with higher mortality rates due to its reoccurrence and late diagnosis. In recent years, the field of medical nanotechnology has witnessed significant progress in addressing existing problems and improving the diagnosis and therapy of various diseases including cancer. Nevertheless, the literature and current reviews on nanotechnology are mainly focused on its applications in other cancers or diseases. In this review, we focused on the nanoscale drug delivery systems for ovarian cancer targeted therapy and diagnosis, and different nanocarriers systems including dendrimers, nanoparticles, liposomes, nanocapsules, and nanomicelles for ovarian cancer have been discussed. In comparison to non-functionalized counterparts of nanoformulations, the therapeutic potential and preferential targeting of ovarian cancer through ligand functionalized nanoformulations' development has been reviewed. Furthermore, numerous biomarkers such as prostatic, mucin 1, CA-125, apoptosis repeat baculoviral inhibitor-5, human epididymis protein-4, and e-cadherin have been identified and elucidated in this review for the assessment of ovarian cancer. Nanomaterial biosensor-based tumor markers and their various types for ovarian cancer diagnosis are explained in this article. In association, different nanocarrier approaches for the ovarian cancer therapy have also been underpinned. To ensure ovarian cancer control and efficient detection, there is an urgent need for faster and less costly medical tools in the arena of oncology.


Assuntos
Dendrímeros , Nanocápsulas , Nanopartículas , Neoplasias Ovarianas , Feminino , Humanos , Caderinas/uso terapêutico , Carcinoma Epitelial do Ovário/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Ligantes , Lipossomos , Nanotecnologia , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA